
Bio3composites

pierre-etienne.bourban@epfl.ch

Institut des Matériaux (IMX)

Ecole Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne



pierre-etienne.bourban@epfl.ch 2

Outline
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Polymer composites in biomedical devices

• Introduction

• Bulk biocomposites
– Dental applications
– Prosthesis

• Porous biocomposites
– Textiles
– Foams
– Bone tissue engineering

• Composite hydrogels
– Synthesis 
– Mechanical performance
– Nucleus pulposus, cartilages…
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Definition

• Biomaterials : natural or synthetic materials used to complete or replace tissue 
functionality in the body

• Biocomposites: combined materials, based on a polymer matrix and applied to 
the biomedical field
Ex: implants, medical devices, internal or external body uses

ICRC Limb prosthesis

Medtronic Talent Abdominal Stent GraftStryker Knee Replacement System
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Why polymer based biocomposites ?

Ramakrishna et al 2001

+ biomimetic
+ bioactive
…

Advantages Drawbacks

Metals

- High resistance
- Ductility

- Corrosion, low biocompatibility
- High modulus compared to 
tissues
- High density
- Release of metallic ions

Ceramics

- Good biocompatibility
- Resistance to corrosion
- Resistance in compression

- Brittleness
- Difficult to machine, high density
- Lack of impact strength

Polymers

- Variety of compositions, 
properties and shapes

- Possibility of complex shapes

- Sterilization
- Absorption of liquid, swelling
- Release of small molecules
- Too « soft » for some 
applications (e.g. bone)

• Advantages
– Native human tissues are anisotropic composites
– Design freedom and tailored mechanical properties
– Control of reinforcement volume fraction and placement         

adjusted to natural tissue properties
– Adapted to medical analyses techniques (CT or MRI)
– May completely resorb

• Drawbacks
– Interface: diffusion of the physiological medium, mechanical stresses
– Sterilization: risks of polymer degradation
– Surface treatment: difficult to improve biocompatibility

Polymer composites
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Composites for dental restoration

Material Ec (GPa) sc (MPa)

Composite resin 10-16 170-260

Dentin 11.0 39.3

 Dental filling: Acrylate resin +33-78 wt% (quartz,baryum glass,colloidal silica)

Challenges : wear, brittleness, shrinkage

• Dental bridge, crowns, restorations: dental resins + glass fibers, Kevlar or UHMWPE

Fibers vol% stransverse (MPa)

UHMWPE 48 188

glass 33 265
Freilich et al 2000

Challenges : impregnation, interfaces, shrinkage, conversion degree…

https://www.dentapreg.com
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Ortheses and prostheses
Prostheses for sports

https://www.plusport.ch/fr/

https://www.sofia-g.ch/

https://www.ossur.com https://www.ottobock.ch

Ortheses

Prostheses

(+)  lightness, tailored stiffnesses,minimum dimensions
 fiber quality, quantity and orientation : prices
 deformable parts, very elastic, strain energy
 improved reliability and comfort

(-) longer manufacturing, cost, testing device required

Preimpregnated carbon-epoxy
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Affordable Prostheses

Minimal cost and maximal life time: feet for ICCR

Center rib (PP)

Foot core (PU 
foam)

Sole (PU)

Challenge: fatigue cracks at the top of the center rib

Without additional reinforcement smax=1.2 MPa With UD glass fibers smax=0.85 MPa 

Gugolz, Rion, EPFL,2002
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EPFL-ICRC

https://blogs.icrc.org/inspired/2019/05/05/affordable-feet-icrc-agilis-prostheses/
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Bulk biocomposites - summary

• Structural bio-inert composites are an answer to mechanical requirements of 
tissues to be substituted
– Possibility  to tailor implants or prosthesis properties to those of the 

diseased tissue
– Balance between functionality / performance / biocompatibility

• Tissue/ implant interface is of growing interest
– Poor anchorage, which may induce pain and living tissue necrosis
– Porous layer in surface can favor tissue growth and adhesion to the implant

• Bioactive and porous composites for tissue engineering are required for 
integration and tailored properties in order to meet specific clinical requirements
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Bio(resorbable) implants

Sutures

Matrices for 
tissue 
engineering

Bioresorbable
screws (fixation)

Drug release

Dental 
membranes

Fixation elements 
for maxillofacial 
surgery

Biomaterials for 
bone 
augmentation

Vertebral 
cages

Phus
is

Biologists

Surgeons

 Multidisciplinary projects

Engineers:
materials, 
chemistry, 
mechanics…
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Elastic modulus of biological tissues 

S. Budday, T. C. Ovaert, G. A. Holzapfel, P. Steinmann, E. Kuhl, Fifty Shades of 
Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue, Springer 
Netherlands, 2019. 
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Textiles

• Wowen or embroidered textiles

– 3D architectures of fibers are placed 
an oriented in order to optimize 
local resistance and rigidity

– Angiogenesis, vascularization, 
hernia….

• Non woven scaffold
– Low mechanical resistance
– High porosity > 95%, but not 

controlled
– Large specific surface

Sofradim Covidien.com

https://www.innovationintextiles.com/bi
ofelt-absorbable-scaffold-for-implant-
devices/
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Bone

 Bone is a mineralized structure, with 3 functionalities

- Mechanical

- Protective

- Metabolic

 Bone is a living material, going 
through remodeling

 Problems
- Fractures
- Bone injury/trauma
- Osteotomy
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Composite cellular structures

• Materials requirements
– Composite biomaterials
– Polymer based implants
– Porosity > 75%
– Pores: interconnected

with Ø 200-400 mm
– Mechanical resistance

Crystals 
HA

Collagen

1 nm

• Surgeons look for
– Improved mechanical resistance
– Possibility to reshape the graft 

during surgery
– Toughness to screw into scaffold 
– Improved biological behavior: 

rapid bone growth
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Foams

Poro
sity 
(%)

Ø pore 
(mm)

Mechanical 
property

Advantage Drawback

Solvent casting 
/ particulate 
leaching 
(SC/PL)

90-95 100-180 Ec~160kPa

- Open pores

- + short fibers

- Organic solvent
- Residual particles
- Sensitive to person and 
material
- Thin membranes

Gas foaming 
(GF)

90-95 ~100 Ec~300kPa
- No solvent

- + fillers / fibers

- Closed pores
- Non porous skin

Emulsion 
freeze-drying 
(EFD)

90-95
13-35  

(< 200)
/

- Open pores
- No dissolution step

- Thick samples

- Micropores
- Organic solvent
- Sensitive to person and 
material

Thermally 
induced phase 
separation 
(TIPS)

80-95
20-100 
(< 500)

Ec~6MPa

sc=0.23MPa

- Open pores
- Many parameters to 
adjust pore diameter
- + short fibers

- Organic solvent
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Development of a biocomposite foam

Materials

Compounding
 Homogeneous 

reinforcement dispersion

Foaming process

 foaming of bioresorbable
polymers filled with ceramic 

particles

Autoclave scC02, Pmax 300 bar, Tmax 300 °CTwin- screw extruder 

• Bioresorbable polymers
Poly (L-lactic acid) PLA
IV=1.6-1.8 dL/g; Tm=181.7 °C

Ca10(PO4)6(OH)2
Ca3(PO4)2

• Bioceramics: reinforcement,resorption
control,osteoconductivity

Hydroxyapatite HA

nanometric size; 50 m2/g 

Tricalcium phosphate b-TCP

micrometric size; 1-2 m2/g

O CH C

CH3

O
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Mixing ceramic into PLA

Dry powder mixing

Solvent phase dispersion

 Homogeneous dispersion, 
but solvent traces

Extrusion

 Homogeneous dispersion 

 Ceramic rich zones  Extrusion mixing is the 
chosen method
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Viscosity of filled PLA

 T = main parameter affecting viscosity

• Semi-diluted suspensions
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Supercritical CO2 foaming

Factors affecting foaming

• External parameters 

- Saturation Psat, Tsat, tsat

- Gas release rate dP/dt vs      
cooling rate dT/dt

• Polymer / CO2 interactions : Diffusion 
Concentration: CCO2

• Elongational viscosity m
m = f(polymer, T, CCO2)

150bar-5.1°C/s 208bar-2.4°C/s 242bar-4.4°C/s

 Higher saturation pressure  smaller pores, higher porosity
 Slower cooling rate  more open porosity
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Foaming biocomposite PLA

PLA PLA + 5 wt% HA

5mm HA

b-TCP

Homogeneous 
dispersion of 
fillers in pore 
walls
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in plates hybrid in rods
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Mathieu et al 2006

Trabecular bone and composite foams
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Mechanical behavior

• E* up to 250 MPa
s* up to 6 MPa Suitable for trabecular bone regeneration

• Filler volume 
 modulus E* and yield stress s* 
 improvement of foam mechanical resistance
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Cellular composites with long fibres

…with fillers

Porosity Gradient

+ gradient of fibres



?

…MPa

…GPa
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Foaming biocomposites with continuous fibres
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Vf [%] 4 0 4

P [%] 70 90 70

Vm [%] 26 10 26

A smooth transition of the composites 
architecture from skin to core entails an 

advantageous distribution of internal 
stresses.

Gradients in fibre & porosity fraction
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Fibres for mechanical performance
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In vitro biocompatibility

• Proliferation: cells spread on the support

• Mineralization: CaP 
crystals are formed in 
presence of cells

 Biocomposite scaffolds are biocompatible with bone fetal cells

• Differentiation: cells 
express genes specific 
of osteoblastic 
phenotype
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In vivo biocompatibility

• Rats: cranial critical size defect

• Sheep : Femoral and tibial defects

• Human

 no inflammation, ossification
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Bone grafts market

• Worldwide: 1’350’000 /year 
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USA
Japan
Europe (top 5 markets)

 Constant growth of bone grafts: 
+7%  per year

 Bone graft distribution

Autograft
48%

Allograft & 
DBM
27%

BMPs
9%

Synthetics
16%

 Search for a synthetic substitute 
which favors bone regeneration

• Highly competitive & fragmented market
• A new product must demonstrate

– Its unique selling proposition
– Be customer oriented 
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Comparison with existing products

Autografts  
gold-

standard

Allografts 
Osteotech

Ceramics 
Synthes

Polymers 
Macropore

Gels          
Ostim 

Medical

Proteins
Stryker
OP-1

EPFL

Composite

Osteocon-
ductive

+++ +++ ++ + ++ +++ ++

Osteoin-
ductive

+++ + 0 0 +? +++ 0

Qtty 
available

--- - +++ +++ +++ +++ +++

Shapability + + - + n.a. n.a. +++

Mech. 
resistance 
(compare 
to bone)

= =
>>>

(brittle)
<< no n.a. =
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Biocomposite A: shape your scaffold

Research phase
Process/material 

Industrialization, 
distribution

Product registration
CE, ISO 10993

Development phase
Stability

Process/material 
reliability

Sheep in vivo study

Rat in vivo study

Clinical study

Roadmap

materials
portfolio processing clinical studyin-vivo

product 
distribution

EPFL-LTC + EPFL-LBO +CHUV Company

Add. 
Biotests
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Biocomposite B : more osteoconductive

cellular nano composite

Biocomposite A Biocomposite B

New nano filler

Same PLLA polymer
Same process

Delabarde, Plummer  2011
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Biocomposite C : Softer cellular scaffold

Biocomposite A and B: 
40-100 MPa

Biocomposite 
C: 4-15 MPa

Bone

Cartilage

Tailoring of polymer

PLLA blends and copolymers

Cuénoud, 2012

Same process
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Biocomposite D : 3D printed scaffolds

Matteo Marascio

• Custom-made 3D structures
• Reproduce geometry of body parts, surgeon support, replica of in vivo milieu

• In vitro platforms to study cell response and drug screening
• scaffold pore size, geometry, wettability, adhesion, mechanical loading on cells behavior

• Templates/scaffolds for tissue regeneration
• Building inner architecture and surface properties
• Mechanical performance, permeability, nutrients diffusion,cell response…

www.rts.ch/play/tv/le-court-du-jour/video/imaginez-
un-monde--os-et-cartilage-artificiels?id=8173609
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Bone

DemoArticulati
on

Marascio M. 2017

FDM of different PLA based structures

PLABTCP

PLAPCL

Model Foamed3D PrintedHuman cartilage
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Bone

DemoArticulati
on

Marascio M. et al JAMT, 2017

Direct 3D Foam Printing
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Processing for medical devices

• Additional phenomena to control
• Degradation during processing

• Drying
• Molecular weigth drop

• Contamination
• Environment
• Tools

• Sterilization
• EtOH
• Gamma
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Biocomposite D : 3D printed devices
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OUTLINE
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– Prosthesis

• Porous biocomposites
– Textiles
– Foams
– Bone tissue engineering

• Composite hydrogels
– Synthesis 
– Mechanical performance
– Nucleus pulposus, cartilages…
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Why a nucleus pulposus (NP) implant ?

• 80% of world population will suffer from back pain due to degenerated discs.
• Disc degeneration starts at the age of 30.
• Recent trends in surgery are shifting toward preservation techniques.
• Spine market is growing by 15%-20% a year
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Biomechanics of the healthy NP

Property Estimated value

Water content 65%-90% (Antoniou 1996)

Swelling pressure 0.1 MPa – 3 MPa (Iatridis 1997)

Hydraulic Permeability 6x10-16 m4/Ns – 15x10-16 m4/Ns (Iatridis 1998)

Hydrostatic pressure 0.1 MPa- 2.3 MPa (Wilke 1999)

pH in tissue 6.9 – 7.2 (Anderson 2005)

Young’s modulus 3 kPa – 6 kPa (Cloyd 2007)

Dynamic shear modulus (|G*|)a 7 kPa – 21 kPa (Iatridis 1997)

Tan (δ) 0.45 (Iatridis 1997)

Tensile/compressive strain ± 10% (max ± 25%) (Tsantrizos 2005)

afrequency: 1-100 rad·s-1

Some examples of other types of tissue for comparison:
• Compact bone: |G*| = 4GPa tan(δ) = 0.01 (Lakes 1979)
• Spinal motion segment: |G*| = 45MPa tan(δ) = 0.1   (Ohshima 1989)
• Meniscus: |G*| = 100kPa tan(δ) = 0.40 (Zhu 1994)
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Polymer hydrogels for nucleus replacement

Requirements
Approach and Challenges
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Synthesis and Curing kinetics

Crosslinker

Polymer molecules
Deionized water

Photoinitiator

UV 
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Influence of the crosslinker (T3) concentration

T3/NVP
T3/HEMA

• Plateau indicates end of polymerization.
• η* increases with T3 concentration  stiffer network.
• T3/HEMA hydrogels stiffer than T3/NVP hydrogels.
• Curing time longer for T3/HEMA hydrogels.

• Stiffness of network defined by T3 concentration.
• Short curing times induce low stiffness of hydrogel network.
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Swelling behavior

SR= Ws/Wd=(Ww-Wd)/Wd

• The amount of crosslinker T3 controls the swelling capacity of the hydrogel network.
• The swelling  ratio of developed hydrogels varies from 1.5 to 5.6  which is in the range of 

the native nucleus ratio ( 1.8 to 9).



pierre-etienne.bourban@epfl.ch 49

Compression of hydrogels

E (dried samples) [kPa] E (after polymerization)  [kPa] E (after rehydration)[kPa]

T3-8 2200 50 3

T3-15 2500 80 4

• Stiffness can be tailored mainly with PBS content.
• Modulus of native nucleus (3 to 6 kPa) achieved but ideal NP implant should be higher.

Solid symbols: T3-8
Hollow symbols: T3- 15
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Composite hydrogels
Hydrogel + Nanofibrillated Cellulose (NFC)

Zimmermann T, Advanced Engineering 
Materials. 2004;6(9):754-61

b

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0d

d
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• Synthesis of injectable, UV cured polymer hydrogel
• NFC % increases E elastic modulus of 3 to 8-fold.
• Swelling behavior SR hindered by high concentrations % of neat NFC.
• Modification of fibrils hydrophilicity (DS) to tailor the swelling

Borges, ActaBiomateriala, 2011
Eyholzer, Biomacromolecules, 2011
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Application requirements
for selecting the final materials

• Failure and fatigue performance 
• Injection and UV curing
• Maintaining disk height
• Ex and in vivo studies

PEGDM hydrogels and cellulose fibrils

Khoushabi, CSTE, 2015
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Bovine animal model

Khoushabi, Schmocker, et al 2015
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Hydrogel composites for
fracture strength, dissipation, adhesion…

Céline Wyss et al 2018
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Peyman Karami, Céline Wyss et al 2018

Hydrogel composites for
fracture strength, dissipation, adhesion…
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Combining composites and microgels

Céline Wyss et al,  Soft Matter, 16,3769, 2020
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In situ self-reinforced silk hydrogel composites

Céline Wyss et al,  Soft Matter, 2021
EPFL thesis 8128, 2021

Gradient composite for soft tissues
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Biocomposites : Today & tomorrow

• Composites have recent applications in biomedical fields

• They offer the freedom to tailor structures and fonctions to tissue properties

• Cost-effective and solvent-free processes start to be available

• Biomaterials and regenerative medicine (https://ssbrm.ch/)

• Research 
– Surfaces and interfaces
– Biomimetism
– New polymers / fillers allowing a better control of resorption rate tailored 

to tissue growth and of anisotropy
– Use biomechanical environment to foster tissue regeneration
– Addition of bioactive factors and cells
– Additive manufacturing
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Outline

Polymer composites 
in biomedical devices

Biodegradable composites 
from renewable resources

Natural fibre 
biocomposites
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PLA/cellulose foams

Sustainable composite foams for packaging, insulation and displays
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PLA PLA 5% MFC

Some research highlights

Compounding for foaming

Foaming phenomena versus 

polymer rheology and degradation

 Influence of  wood fibres and micro-
fibrillated  cellulose

(MFC) network on foam expansion and 
density

Stable batch and continuous  foaming 
processes
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Boissard, 2012

Process
Structures
Properties
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Process
Structures
Properties
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A: Materials to replace expanded 
polystyrene in packaging applications: SCA  PLA Cushioning

B: Improved Mater-Bi products to replace
conventional industrial protective packaging: Novamont

C: Sustainable' green' foam products in the display and core products 
portfolio: 'Display Panels from 3A Composites'

Key understandings

• Compounding hydrophilic cellulose and 
degradable polyester for foaming

• Rheology of WF and MFC composites
• Foaming parameters for neat and composite PLAs
• Up-scaling of physical foaming processes

Demonstrators
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Outline

Polymer composites 
in biomedical devices

Biodegradable composites 
from renewable resources

Natural Fibre 
bioComposites NFC
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Natural Fibres for Composites

Sustainability: 
reduction of cradle-to-gate CO2 footprint
lifecycles of final products
bio-degradable

Lightweight
Damping

Hydrophilic
Processing



pierre-etienne.bourban@epfl.ch 

Artengo: flax(5%)/
carbon epoxy

NFC today

Thermoset NFC 

• SMC, prepreg
• UP, Epoxy, VER, Phenolic
• Jute, flax, hemp…

• Modulus E ~ 10-20 GPa
• Strength ~ 200-300 MPa
• With fibre treatment : + 15-50% E

Thermoplastic NFC

• Mainly GMT
• PP,MAPP, PET, PE
• Flax, wood…

• E ~ 6 GPa (PP), 20 GPa (PET)
• Strength ~ 100 MPa
• specific properties

higher than GF/PP

Quadrant load 
floor of the 
Porsche Cayenne: 
PP reinforced with 
40% kenaf, flax, 
wood and glass 

Museeuw: 
flax/carbon epoxy

FlexForm door panel 
from the Mercedes 
M-Class and R-class: 
jute(50%)/glass PP

Stockli
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https://www.bcomp.ch/
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Damping ?
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Energy absorption at different material scales

Damping 
phenomena 

• dampers
• viscoelasticity

Materials 

• elastomeric interlayers
• fibre type and orientation
• polymer matrix
• interphase
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Materials and specific properties: Flax Fibre composites

F. Duc  2014
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Damping properties of natural fibre composites
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Stiffness versus damping properties
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Coupled damping phenomena

CrimpCrimp

TwistTwist

ImpregnationImpregnation

AdhesionAdhesion

StiffnessStiffness

QualityQuality

Parameters
Increase of:

Intra-cell
wall frictions

Intra-cell
wall frictions

Inter-cell
wall frictions

Inter-cell
wall frictions

Intra-yarn
frictions

Intra-yarn
frictions

Inter-yarn
frictions

Inter-yarn
frictions

Fibre/matrix 
friction

Fibre/matrix 
friction

Friction mechanisms

DAMPING 
PROPERTIES
DAMPING 

PROPERTIES

Properties

MECHANICAL 
PROPERTIES

MECHANICAL 
PROPERTIES

Properties

Increase Decrease

F. Duc  2014
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Phenomena controlling damping

4. Intra-cell wall friction
Friction between cellulose 

and hemicellulose

3. Inter-cell wall friction
Friction between the cell

walls

1. Inter-yarn
friction

Friction between the 
yarns

2. Intra-yarn
friction

Friction between the 
elementary fibres

Fibre (yarn)/matrix 
friction

Yarn
level

Fibre 
level

F. Duc  2014
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Damping map

EP 

PLA 

PP 

FF + EP 

GF 
CF 
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Hybrid 
CF/FF + EP 

F. Duc  2014
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Material-athlete interactions
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Tailored materials for controlled 
human-material interactions : feel and control

Vision: Integrate cognitive assessment in the design of novel materials and structures
Scientific topic: Embedding smart materials and sensitive devices for improving ‘feel and control’.
Applications envisaged: skis, tennis raquettes, prosthesis, implants…
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